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The planewave response of a linear passive material generally cannot be characterized by a single scalar
refractive index, as directionality of energy flow and multiple wave vectors may need to be considered. This is
especially significant for materials which support negative refraction, negative phase velocity, and counterpo-
sition. By means of a numerical example based on a commonly studied bianisotropic material, our theoretical
investigation revealed that �i� negative �positive� refraction can arise even though the phase velocity is positive
�negative�, �ii� counterposition can arise in instances of positive and negative refraction, �iii� the phase velocity
and time-averaged Poynting vectors can be mutually orthogonal, and �iv� whether or not negative refraction
occurs can depend on the state of polarization and angle of incidence. A further numerical example revealed
that negative phase velocity and positive refraction can coexist even in a simple isotropic dielectric material.
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I. INTRODUCTION

Negatively refracting materials have been subjected to in-
tense interest since the first experimental demonstration of a
negatively refracting isotropic dielectric-magnetic material at
the turn of this century.1,2 The enhanced scope for negative
refraction in anisotropic materials3,4 and in materials, which
exhibit either isotropic5–7 or anisotropic8 magnetoelectric
coupling, has been widely reported upon. Indeed, bianisot-
ropy may be responsible for unexplained features in certain
materials which were taken to be isotropic dielectric-
magnetic materials.9

We confine ourselves here to linear passive materials. The
characterization of negative refraction in anisotropic and bi-
anisotropic materials should be expected to be much more
complicated than in isotropic dielectric-magnetic materials,
as the effects of directionality, magnetoelectric coupling, and
two refraction wave vectors need to be considered.10 How-
ever, it is often overlooked that even in an isotropic dielectric
material the effects of directionality can be important if non-
uniform plane waves are considered. Negative phase velocity
�NPV�, which means that the phase velocity of a plane wave
casts a negative projection onto the time-averaged Poynting
vector, is commonly taken as a convenient indication of the
propensity for negative refraction.11,12 For uniform plane
waves in isotropic dielectric-magnetic materials, the phase
velocity and time-averaged Poynting vector are either paral-
lel or antiparallel. Accordingly, as regards uniform plane-
wave propagation, negative refraction, and NPV are held to
be effectively synonymous terms for these materials. But for
nonuniform plane waves, the time-averaged Poynting vector
and the phase-velocity vector are not necessarily parallel or
antiparallel even in isotropic dielectric materials.13 The intro-
duction of anisotropy or bianisotropy further complicates the
issue with the phase velocity and time-averaged Poynting

vector being generally neither parallel nor antiparallel for
both uniform and nonuniform plane waves. Thus, NPV
should not be generally assumed to be a definite signature of
the capability to exhibit negative refraction.

For many practical applications, the direction of energy
flow, as delineated by the time-averaged Poynting vector,
and its deflection at the planar boundary between two differ-
ent mediums may be more significant than the deflection of
the wave vector. It is quite possible for the real part of a
refraction wave vector and its associated time-averaged
Poynting vector to be oriented on opposite sides of the nor-
mal to a planar interface. This counterposition of the real part
of the refraction wave vector and the time-averaged Poynting
vector has been theoretically demonstrated as taking place in
certain anisotropic14–16 and bianisotropic17 materials. Fur-
thermore, counterposition can also arise for nonuniform
planewave propagation in certain isotropic dielectric materi-
als, as we describe later in this paper.

Very recently there have been several reports of bianiso-
tropic materials which may possess structural chirality and
exhibit a “negative index,”18–21 including a commentary on
this topic.22 The negative index relates to the real part of a
wave number �relative to that in vacuum�, typically corre-
sponding to propagation in one direction only, for one polar-
ization state only. However, the planewave responses of bi-
anisotropic materials are not at all adequately represented
that simply: different directions of propagation, different po-
larization states, and the relationship to the time-averaged
Poynting vector need to be considered too. In contrast, we
note that there are some studies in which bianisotropic as-
pects are taken into account better.23–25 In the remainder of
this paper, we highlight the complications that can arise in
the planewave response of such a bianisotropic material; fur-
thermore, we demonstrate that some of these complications
can actually be exhibited by relatively simple materials, such
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as an isotropic dielectric material. In doing so, we report on
important distinctions between negative refraction, NPV, and
counterposition which have not been appreciated hitherto.

II. PLANE WAVES IN A BIANISOTROPIC
MATERIAL

Let us consider the Lorentz-reciprocal26 bianisotropic ma-
terial described by the constitutive relations

D� = �= • E� + �
=

• H� ,

B� = �
=

• E� + �
=

• H� , �1�
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with �0 and �0 being the permittivity and permeability of
vacuum, respectively, and c0=1 /��0�0. These particular
constitutive relations were chosen because they have been
used to describe a material assembled from layers of split-
ring resonators.27 This general configuration is a popular one
within the negative-refraction community,20,21,25 but its ori-
gins predate the current surge of interest in negative
refraction.28 The term pseudochiral omega material may be
used to describe this material.29

Suppose that a material described by Eqs. �1� and �2�
occupies the half-space z�0, while the half-space z�0 is a
vacuum. We confine ourselves to propagation in the xz plane.
In the half-space z�0, a plane wave with field phasors

E� �r�� = E� 0 exp�ik0�x sin � + z cos ��� ,

H� �r�� = H� 0 exp�ik0�x sin � + z cos ��� �3�

is incident on the interface z=0, where the free-space wave
number k0=���0�0, with � being the angular frequency. As
the incident plane wave transports energy toward the inter-

face, the angle �� �0,	 /2� so that the real-valued scalar


 = k0 sin � � �0,k0� . �4�

Two refracted plane waves must exist in the half-space
z�0. Let us represent these plane waves by the phasors

�E� �r�� = E� j exp�ik� j · r��
H� �r�� = H� j exp�ik� j · r�� 	 �j = 1,2� , �5�

wherein the wave vectors

k� j = 
x̂� + kzjẑ� , �6�

with kzj �C in general. Thus, the plane waves in the half
space z�0 are generally nonuniform. The scalars kzj are
found by combining the constitutive relations �Eqs. �1�� and
�Eqs. �2�� and the planewave phasors �Eqs. �5�� with the
Maxwell curl postulates. Thereby, we find10

L= • E� j = 0� �j = 1,2� , �7�

with the dyadic

L= = �k� j � I= + ��
=
� • �
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The dispersion relation det L= =0 yields the two wave num-
bers

kz1 = k0��x
�y −

2
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2
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In these two relations, the square roots must be evaluated
such that both refracted plane waves transport energy away
from the interface z=0 in the half-space z�0.

In order to establish the energy flow associated with the
refraction wave vectors k� j, the time-averaged Poynting vec-
tors
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1
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FIG. 1. �a� Real part of kzj /k0 and �b� the angle �in degree�
between the real part of k� j and the positive z axis both plotted
against 
 /k0. The solid curves correspond to j=1 and the dashed
curves to j=2. As Im kzj �0 for all 
 /k0� �0,1� and both values of
j, the imaginary parts of kz1 /k0 and kz2 /k0 have not been plotted
here.
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FIG. 2. �a� The x component of the normalized time-averaged
Poynting vector and �b� the angle �in degree� between the time-
averaged Poynting vector and the positive z axis, both plotted
against 
 /k0. The solid curves correspond to j=1 and the dashed
curves to j=2. As z� • P� j �0 for all 
 /k0� �0,1� and both values of j,
those quantities have not been plotted here.
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have to be considered. Both P� 1 and P� 2 lie in the xz plane;
furthermore, E� 1 is directed along the y axis whereas E� 2 lies
in the xz plane.

Let us now consider a specific numerical example in
which the constitutive parameters for the bianisotropic mate-
rial occupying the half space z�0 are �x=0.1+0.03i, �y
=0.14+0.02i, �z=0.13+0.07i, �x=−0.29+0.09i, �y =−0.18
+0.03i, �z=−0.17+0.6i, and �=0.11+0.05i. These particular
values of the constitutive parameters are chosen in order to
highlight the complexity of planewave response that can be
exhibited by bianisotropic materials. Since these materials
are artificially constructed materials, the range of values that

their constitutive parameters can adopt is vast. There is no
theoretical barrier to the particular values chosen here: these
describe a dissipative pseudochiral omega material. It is
through accessing unconventional values of the constitutive
parameters that we determine if metamaterials may exhibit
their exotic and potentially useful properties.

In Fig. 1, the real part of kzj /k0 �j=1,2�, is plotted as a
function of �
 /k0�� �0,1�. As the imaginary parts of both kz1
and kz2 turned out to be positive, both refracted plane waves
must attenuate as z→�, in consonance with our understand-
ing of a passive medium. Also plotted in Fig. 1 is the angle
between the real part of k� j �j=1,2�, and the positive z axis.
The refracted plane wave labeled 1 is positively refracted for
0� �
 /k0��0.14 but negatively refracted for 0.14� �
 /k0�
�1. Additionally, the refracted plane wave labeled 2 is nega-
tively refracted for 0� �
 /k0��0.22 but positively refracted
for 0.22� �
 /k0��1.

The normalized x component of the time-averaged Poyn-
ting vectors for both refracted plane waves is plotted against
�
 /k0� in Fig. 2. The angle between P� j �j=1,2�, and the
positive z axis is also plotted. The z components of P� 1 and P� 2
are positive for all �
 /k0�� �0,1� in accordance with the rule
to evaluate the square roots in Eqs. �9�. But, whereas the x
component of P� 1 is negative for all �
 /k0�� �0,1�, the x
component of P� 2 is negative only for �
 /k0�� �0,0.01�.
Therefore, P� 1 always subtends a negative angle to the posi-
tive z axis, whereas the sign of the angle that P� 2 subtends
depends on 
.

TABLE I. �Color online� Ranges of values of 
 for which the
plane wave labeled 1 supports negative/positive refraction, counter-
position, and negative/positive/orthogonal phase velocity. The final
column shows the directions in the z�0 half space of Re k�1 �thick
dashed arrows; blue in electronic version� P� 1 �thick solid arrows;
red in electronic version� for representative values of 
; also shown
are the directions of the wave vectors for the incident and reflected
plane waves in the z�0 half space �thin solid arrows; green in
electronic version�.

�� /k0�� Refraction Counterposition
Phase

velocity P� 1 , Re k�1

�0,0.07� +ve Yes +ve

�0.07� +ve Yes Orthogonal

�0.07,0.14� +ve Yes −ve

�0.14,1� −ve No −ve

x

z

x

z

x

z

x

z

TABLE II. �Color online� As Table I but for the plane wave
labeled 2.

�� /k0�� Refraction Counterposition
Phase

velocity P� 2 , Re k�2

�0,0.01� −ve No −ve

�0.01,0.04� −ve Yes −ve

�0.04� −ve Yes Orthogonal

�0.04,0.22� −ve Yes +ve

�0.22,1� +ve No +ve
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FIG. 3. The quantity Re�k� j� • P� j / �k0�P� j�� plotted against �
 /k0�
� �0,1�. The solid curve corresponds to j=1 and the dashed curve
to j=2.
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The phenomenon of counterposition16 arises when the in-
equality

Re�kzj�x̂� • P� j � 0 �11�

is satisfied. By comparing Figs. 1 and 2, we see that coun-
terposition occurs for the refracted plane wave labeled 1
when 0� �
 /k0��0.14. That is, the 
 range for counterposi-
tion coincides with the 
 range for positive refraction. How-
ever, this is not the case for the refracted plane wave labeled
2: here, counterposition occurs only for 0.01� �
 /k0�
�0.22.

The quantity Re�k� j� • P� j determines whether the phase ve-
locity of the refracted plane wave labeled j is positive or
negative. In Fig. 3, the quantity Re�k� j� • P� j / �k0�P� j�� �j=1,2�
is plotted against �
 /k0�� �0,1�. The phase velocity is nega-
tive for the refracted plane wave labeled 1 for 0.07
� �
 /k0��1, while for the refracted plane wave labeled 2 it
is negative for 0� �
 /k0��0.04. Thus, the 
 ranges for NPV
do not coincide exactly with those for negative refraction.
For example, consider 
=0.1k0: �i� The angle between Re k�1
and the +z axis is 86°, while the angle between P� 1 and the +z
axis is −13°. This refracted plane wave has NPV but it is
positively refracted. �ii� The angle between Re k�2 and the +z
axis is −79°, while the angle between P� 2 and the +z axis is
58°. This plane wave has positive phase velocity but it is
negatively refracted.

Our results are summarized in Tables I and II for the plane
waves labeled 1 and 2, respectively. These tables include
illustrations of the directions of Re k� j and P� j �j=1,2�, for
representative values of 
. Elsewhere we have confirmed that
the corresponding reflection and transmission coefficients are
nonzero.30

III. A SIMPLE CASE: AN ISOTROPIC DIELECTRIC
MATERIAL

An important point demonstrated in the preceding section
is that under certain circumstances NPV and positive refrac-
tion can coexist for the bianisotropic material under consid-
eration. This coexistence of NPV and positive refraction has
previously been predicted for certain photonic crystals31 and
nondissipative uniaxial-dielectric mediums described by in-
definite permittivity tensors14 �as well as for certain active
materials32�. In fact, the independence of NPV and negative
refraction is also manifest in simpler materials. Let us take,

for example, the simple case where the half-space z�0 is
occupied by an isotropic, dielectric material with relative
permittivity scalar �. This represents the simplest specializa-
tion of Eqs. �1� and �2�. Here there is only one refraction
wave vector, i.e., k�1=k�2, where �k�1,2�=k0

��, but the two as-
sociated time-averaged Poynting vectors, namely, P� 1 and P� 2,
are generally distinct in terms of both magnitude and direc-
tion for ��C. As previously, P� 1 corresponds to E� 1 being
perpendicular to the plane of incidence and P� 2 corresponds
to E� 2 being parallel to the plane of incidence.

For the purposes of illustration, let us take the relative
permittivity scalar �=−6+2.5i. A straightforward calculation
reveals that the refraction is always positive for both perpen-
dicular and parallel polarization states. Furthermore, when
the electric-field phasor is perpendicular to the plane of inci-
dence, the phase velocity is positive and there is no counter-
position, regardless of the value of �. Indeed, the time-
averaged Poynting vector and the phase velocity are parallel
for this polarization state. A different picture emerges when
the electric-field phasor is parallel to the plane of incidence:
counterposition occurs for all � and the phase velocity
changes from positive to negative as � increases in value
with the phase velocity being orthogonal to the time-
averaged Poynting vector when �=32°.

The directions of the refracted wave vectors and the cor-
responding time-averaged Poynting vectors are illustrated in
Tables III and IV for both polarization states and for some
representative values of 
.

IV. CONCLUDING REMARKS

The combination of anisotropy and magnetoelectric cou-
pling can result in a much more complicated planewave re-
sponse than is associated with isotropic dielectric-magnetic
materials. This is especially significant when exotic constitu-
tive parameters ranges, such as those associated with certain
materials which support negative refraction, are considered.
A further level of complication is introduced by considering

TABLE III. �Color online� As Table I but the z�0 half space is
replaced by an isotropic dielectric material with a relative permit-
tivity �=−6+2.5i. The plane wave is polarized perpendicular to the
plane of incidence. Notice that here Re k�1 and P� 1 are parallel.

�� /k0�� Refraction Counterposition
Phase

velocity P� 1 , Re k�1

�0,1� +ve No +ve x

TABLE IV. �Color online� As Table III but the plane wave is
polarized parallel to the plane of incidence.

�� /k0�� Refraction Counterposition
Phase

velocity P� 2 , Re k�2

�0,0.53� +ve Yes +ve

�0.53� +ve Yes Orthogonal

�0.53,1� +ve Yes −ve

x

x

x

z
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nonuniform plane waves. The relationships among the three
phenomena of negative refraction, NPV, and counterposition
highlight the complications. In particular, our investigation
based on a pseudochiral omega material has revealed that �a�
negative refraction can arise even though the phase velocity
is positive and positive refraction can arise even though the
phase velocity is negative, �b� counterposition can arise in
instances of positive and negative refraction, �c� whether or
not positive or negative refraction arises can depend on the
angle of incidence, and �d� at the transition from positive to
negative phase velocity with increasing angle of incidence,
the phase velocity and time-averaged Poynting vector are
orthogonal to each other.

The exhibition of NPV in an isotropic dielectric material,
which follows due to the consideration of nonuniform plane

waves, is particularly noteworthy. If only uniform plane
waves are considered then this outcome is impossible: mag-
netic properties or anisotropy, for example, would also be
needed in order to support NPV.12,14

The findings reported herein further emphasize the impor-
tance of fully characterizing bianisotropic materials instead
of attempting to do so with a single scalar refractive index.
Also, the complications that can be introduced by taking ac-
count of nonuniform plane waves even in isotropic dielectric
materials are highlighted. The demonstration that NPV and
negative refraction can arise independently of each other has
highly significant consequences for researchers exploring the
realm of materials which support negative refraction, bi-
anisotropic or otherwise, and beyond.
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